Deep Learning-Based Detection of Pipes in Industrial Environments

Edmundo Guerra, J. Palacín, Zhuping Wang, A. Grau
{"title":"Deep Learning-Based Detection of Pipes in Industrial Environments","authors":"Edmundo Guerra, J. Palacín, Zhuping Wang, A. Grau","doi":"10.5772/intechopen.93164","DOIUrl":null,"url":null,"abstract":"Robust perception is generally produced through complex multimodal perception pipelines, but these kinds of methods are unsuitable for autonomous UAV deployment, given the restriction found on the platforms. This chapter describes developments and experimental results produced to develop new deep learning (DL) solutions for industrial perception problems. An earlier solution combining camera, LiDAR, GPS, and IMU sensors to produce high rate, accurate, robust detection, and positioning of pipes in industrial environments is to be replaced by a single camera computationally lightweight convolutional neural network (CNN) perception technique. In order to develop DL solutions, large image datasets with ground truth labels are required, so the previous multimodal technique is modified to be used to capture and label datasets. The labeling method developed automatically computes the labels when possible for the images captured with the UAV platform. To validate the automated dataset generator, a dataset is produced and used to train a lightweight AlexNet-based full convolutional network (FCN). To produce a comparison point, a weakened version of the multimodal approach—without using prior data—is evaluated with the same DL-based metrics.","PeriodicalId":361129,"journal":{"name":"Industrial Robotics - New Paradigms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robotics - New Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robust perception is generally produced through complex multimodal perception pipelines, but these kinds of methods are unsuitable for autonomous UAV deployment, given the restriction found on the platforms. This chapter describes developments and experimental results produced to develop new deep learning (DL) solutions for industrial perception problems. An earlier solution combining camera, LiDAR, GPS, and IMU sensors to produce high rate, accurate, robust detection, and positioning of pipes in industrial environments is to be replaced by a single camera computationally lightweight convolutional neural network (CNN) perception technique. In order to develop DL solutions, large image datasets with ground truth labels are required, so the previous multimodal technique is modified to be used to capture and label datasets. The labeling method developed automatically computes the labels when possible for the images captured with the UAV platform. To validate the automated dataset generator, a dataset is produced and used to train a lightweight AlexNet-based full convolutional network (FCN). To produce a comparison point, a weakened version of the multimodal approach—without using prior data—is evaluated with the same DL-based metrics.
工业环境中基于深度学习的管道检测
鲁棒感知通常是通过复杂的多模态感知管道产生的,但由于平台的限制,这些方法不适合自主无人机的部署。本章描述了为工业感知问题开发新的深度学习(DL)解决方案所产生的发展和实验结果。早期的解决方案将摄像头、LiDAR、GPS和IMU传感器结合在一起,在工业环境中对管道进行高速率、准确、鲁棒的检测和定位,将被单摄像头计算轻量级卷积神经网络(CNN)感知技术所取代。为了开发深度学习解决方案,需要具有地面真值标签的大型图像数据集,因此修改了先前的多模态技术以用于捕获和标记数据集。所开发的标记方法在可能的情况下对无人机平台捕获的图像自动计算标签。为了验证自动数据集生成器,生成了一个数据集,并用于训练轻量级的基于alexnet的全卷积网络(FCN)。为了产生一个比较点,多模态方法的弱化版本(不使用先前数据)使用相同的基于dl的度量进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信