A. Olabi, Richard Béarée, E. Nyiri, Olivier Gibaru1
{"title":"Enhanced trajectory planning for machining with industrial six-axis robots","authors":"A. Olabi, Richard Béarée, E. Nyiri, Olivier Gibaru1","doi":"10.1109/ICIT.2010.5472749","DOIUrl":null,"url":null,"abstract":"This paper presents a practical approach to adapt the trajectory planning stage for industrial robots to realize continuous machining operations. Firstly, L1 interpolation is introduced to generate efficiently the tool-paths in the form of shape-preserving quintic splines. Then, the tool-tip feedrate planning in Cartesian space is done using a smooth jerk limited pattern and taking into account the joints kinematics constraints. Experimental validations conducted on a 6-axis industrial robot demonstrate the effectiveness of the proposed methodology of trajectory planning in the context of machining.","PeriodicalId":256385,"journal":{"name":"2010 IEEE International Conference on Industrial Technology","volume":"1990 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2010.5472749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper presents a practical approach to adapt the trajectory planning stage for industrial robots to realize continuous machining operations. Firstly, L1 interpolation is introduced to generate efficiently the tool-paths in the form of shape-preserving quintic splines. Then, the tool-tip feedrate planning in Cartesian space is done using a smooth jerk limited pattern and taking into account the joints kinematics constraints. Experimental validations conducted on a 6-axis industrial robot demonstrate the effectiveness of the proposed methodology of trajectory planning in the context of machining.