A minimal convolutional neural network for handwritten digit recognition

M. Teow
{"title":"A minimal convolutional neural network for handwritten digit recognition","authors":"M. Teow","doi":"10.1109/ICSENGT.2017.8123441","DOIUrl":null,"url":null,"abstract":"The contribution of this paper is to bridge the gap on understanding the mathematical structure and the computational implementation of a convolutional neural network using a minimal model. The proposed minimal convolutional neural network is presented using a layering approach. This approach provides a clear understanding of the main mathematical operations in a convolutional neural network. Hence, it benefits beginners and non-mathematical prolific researchers to understand the operation of a convolutional neural network without having an intimidating experience. A handwritten digit recognition using MNIST handwritten digit dataset is used to experiment the performance of the proposed minimal convolutional neural network.","PeriodicalId":350572,"journal":{"name":"2017 7th IEEE International Conference on System Engineering and Technology (ICSET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Conference on System Engineering and Technology (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2017.8123441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The contribution of this paper is to bridge the gap on understanding the mathematical structure and the computational implementation of a convolutional neural network using a minimal model. The proposed minimal convolutional neural network is presented using a layering approach. This approach provides a clear understanding of the main mathematical operations in a convolutional neural network. Hence, it benefits beginners and non-mathematical prolific researchers to understand the operation of a convolutional neural network without having an intimidating experience. A handwritten digit recognition using MNIST handwritten digit dataset is used to experiment the performance of the proposed minimal convolutional neural network.
手写体数字识别的最小卷积神经网络
本文的贡献是在理解卷积神经网络的数学结构和使用最小模型的计算实现方面架起了桥梁。采用分层方法提出了最小卷积神经网络。这种方法提供了对卷积神经网络中主要数学运算的清晰理解。因此,它有利于初学者和非数学多产的研究人员了解卷积神经网络的操作,而不必有令人生畏的经验。利用MNIST手写数字数据集进行手写数字识别,实验了所提出的最小卷积神经网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信