J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, Philip Soltero, A. Merritt
{"title":"Minimal-overhead virtualization of a large scale supercomputer","authors":"J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, Philip Soltero, A. Merritt","doi":"10.1145/1952682.1952705","DOIUrl":null,"url":null,"abstract":"Virtualization has the potential to dramatically increase the usability and reliability of high performance computing (HPC) systems. However, this potential will remain unrealized unless overheads can be minimized. This is particularly challenging on large scale machines that run carefully crafted HPC OSes supporting tightly-coupled, parallel applications. In this paper, we show how careful use of hardware and VMM features enables the virtualization of a large-scale HPC system, specifically a Cray XT4 machine, with < = 5% overhead on key HPC applications, microbenchmarks, and guests at scales of up to 4096 nodes. We describe three techniques essential for achieving such low overhead: passthrough I/O, workload-sensitive selection of paging mechanisms, and carefully controlled preemption. These techniques are forms of symbiotic virtualization, an approach on which we elaborate.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1952682.1952705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
Virtualization has the potential to dramatically increase the usability and reliability of high performance computing (HPC) systems. However, this potential will remain unrealized unless overheads can be minimized. This is particularly challenging on large scale machines that run carefully crafted HPC OSes supporting tightly-coupled, parallel applications. In this paper, we show how careful use of hardware and VMM features enables the virtualization of a large-scale HPC system, specifically a Cray XT4 machine, with < = 5% overhead on key HPC applications, microbenchmarks, and guests at scales of up to 4096 nodes. We describe three techniques essential for achieving such low overhead: passthrough I/O, workload-sensitive selection of paging mechanisms, and carefully controlled preemption. These techniques are forms of symbiotic virtualization, an approach on which we elaborate.