{"title":"STCNN: A Spatio-Temporal Convolutional Neural Network for Long-Term Traffic Prediction","authors":"Zhixiang He, Chi-Yin Chow, Jiadong Zhang","doi":"10.1109/MDM.2019.00-53","DOIUrl":null,"url":null,"abstract":"As many location-based applications provide services for users based on traffic conditions, an accurate traffic prediction model is very significant, particularly for long-term traffic predictions (e.g., one week in advance). As far, long-term traffic predictions are still very challenging due to the dynamic nature of traffic. In this paper, we propose a model, called Spatio-Temporal Convolutional Neural Network (STCNN) based on convolutional long short-term memory units to address this challenge. STCNN aims to learn the spatio-temporal correlations from historical traffic data for long-term traffic predictions. Specifically, STCNN captures the general spatio-temporal traffic dependencies and the periodic traffic pattern. Further, STCNN integrates both traffic dependencies and traffic patterns to predict the long-term traffic. Finally, we conduct extensive experiments to evaluate STCNN on two real-world traffic datasets. Experimental results show that STCNN is significantly better than other state-of-the-art models.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
As many location-based applications provide services for users based on traffic conditions, an accurate traffic prediction model is very significant, particularly for long-term traffic predictions (e.g., one week in advance). As far, long-term traffic predictions are still very challenging due to the dynamic nature of traffic. In this paper, we propose a model, called Spatio-Temporal Convolutional Neural Network (STCNN) based on convolutional long short-term memory units to address this challenge. STCNN aims to learn the spatio-temporal correlations from historical traffic data for long-term traffic predictions. Specifically, STCNN captures the general spatio-temporal traffic dependencies and the periodic traffic pattern. Further, STCNN integrates both traffic dependencies and traffic patterns to predict the long-term traffic. Finally, we conduct extensive experiments to evaluate STCNN on two real-world traffic datasets. Experimental results show that STCNN is significantly better than other state-of-the-art models.