Russian Sign Language Dactyl Recognition

Ilya Makarov, Nikolay Veldyaykin, M. Chertkov, Aleksei Pokoev
{"title":"Russian Sign Language Dactyl Recognition","authors":"Ilya Makarov, Nikolay Veldyaykin, M. Chertkov, Aleksei Pokoev","doi":"10.1109/TSP.2019.8768868","DOIUrl":null,"url":null,"abstract":"In this paper, we compare several real-time sign language dactyl recognition systems and present a new model based on deep convolutional neural networks. These systems are able to recognize Russian alphabet letters presented as static signs in Russian Sign language used by people from deaf community. In such an approach, we recognize words from Russian natural language presented by consequent hand gestures of each letter. We evaluate our approach on Russian (RSL) sign language, for which we collect our own dataset and evaluate dactyl recognition.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we compare several real-time sign language dactyl recognition systems and present a new model based on deep convolutional neural networks. These systems are able to recognize Russian alphabet letters presented as static signs in Russian Sign language used by people from deaf community. In such an approach, we recognize words from Russian natural language presented by consequent hand gestures of each letter. We evaluate our approach on Russian (RSL) sign language, for which we collect our own dataset and evaluate dactyl recognition.
俄语手语长短格识别
本文通过对几种实时手语指格识别系统的比较,提出了一种基于深度卷积神经网络的实时手语指格识别模型。这些系统能够识别在聋哑人使用的俄罗斯手语中作为静态符号呈现的俄罗斯字母。在这种方法中,我们通过每个字母的后续手势来识别俄语自然语言中的单词。我们评估了我们在俄语(RSL)手语上的方法,为此我们收集了自己的数据集并评估了dactyl识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信