Burst Strength of Glass Fiber Reinforced Polyethylene Pipes With Delamination Defect

Ni Zhenlei, Jianfeng Shi, Jinyang Zheng
{"title":"Burst Strength of Glass Fiber Reinforced Polyethylene Pipes With Delamination Defect","authors":"Ni Zhenlei, Jianfeng Shi, Jinyang Zheng","doi":"10.1115/pvp2019-93042","DOIUrl":null,"url":null,"abstract":"\n Glass fiber reinforced polyethylene pipes (GFRPs) are increasingly utilized in the oil and gas transportation industries because of their various benefits. Delamination is one of the most common defects in GFRPs during manufacturing and service, which can affect their mechanical properties. This paper focused on the influence of delamination on short-term burst strength of GFRPs. The GFRPs specimens were 100mm-inner diameter and reinforced by 12 layers of ± 55° cross winding glass fiber tapes. Firstly, artificial delamination of different widths were designed and put into the specimens. Then, the short-term burst tests were carried out. Meanwhile, finite element models were established to predict the burst pressures and the numerical results were in good agreement with that of test results. The results showed that the widths and axial locations of delamination defects had significant influence on the burst pressure and stress distribution, which could lead to a premature burst failure of GFRPs during service. The deformation of GFRPs close to the defect region was also analyzed and the failure mechanism of GFRPs containing defects was discussed in detail.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glass fiber reinforced polyethylene pipes (GFRPs) are increasingly utilized in the oil and gas transportation industries because of their various benefits. Delamination is one of the most common defects in GFRPs during manufacturing and service, which can affect their mechanical properties. This paper focused on the influence of delamination on short-term burst strength of GFRPs. The GFRPs specimens were 100mm-inner diameter and reinforced by 12 layers of ± 55° cross winding glass fiber tapes. Firstly, artificial delamination of different widths were designed and put into the specimens. Then, the short-term burst tests were carried out. Meanwhile, finite element models were established to predict the burst pressures and the numerical results were in good agreement with that of test results. The results showed that the widths and axial locations of delamination defects had significant influence on the burst pressure and stress distribution, which could lead to a premature burst failure of GFRPs during service. The deformation of GFRPs close to the defect region was also analyzed and the failure mechanism of GFRPs containing defects was discussed in detail.
有分层缺陷的玻璃纤维增强聚乙烯管的爆裂强度
玻璃纤维增强聚乙烯管(gfrp)由于其各种优点,在石油和天然气运输行业中得到越来越多的应用。分层是玻璃钢在制造和使用过程中最常见的缺陷之一,它会影响玻璃钢的力学性能。本文主要研究了分层对玻璃钢短期爆裂强度的影响。gfrp试件内径为100mm,采用12层±55°交叉缠绕玻璃纤维带加固。首先,设计了不同宽度的人工分层,并将其放入试件中。然后进行了短时爆破试验。同时,建立了有限元模型对爆破压力进行预测,数值结果与试验结果吻合较好。结果表明:分层缺陷的宽度和轴向位置对破裂压力和应力分布有显著影响,可能导致gfrp在使用过程中过早破裂失效;分析了gfrp在缺陷区域附近的变形情况,并详细讨论了含缺陷gfrp的破坏机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信