{"title":"Determination of the Optimal Resonant Condition for Multi-Receiver Wireless Power Transfer Systems","authors":"S. Lee, Mingi Kim, I. Jang","doi":"10.1109/WPTC45513.2019.9055567","DOIUrl":null,"url":null,"abstract":"For the multi-receiver wireless power transfer (WPT) systems, this study proposes a novel optimization-based method to determine the optimal resonant condition that can maximize the power transfer efficiency while satisfying all the rated powers required on each receiver module. The input source voltage and compensation capacitances are selected as design variables to tune up the optimal resonant condition. The power transfer efficiency is set to be maximized as an objective function, and the target rated power for each receiver module is set as the constraint functions. In the proposed method, design variables are iteratively updated through linking the optimization module and the analysis module. After being verified with the “single transmitter-to-a-single-receiver” WPT system, the proposed method is applied to determine the optimal resonant condition for the multi-module WPT systems. The experimental validation demonstrates the performance and potential of the proposed method.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For the multi-receiver wireless power transfer (WPT) systems, this study proposes a novel optimization-based method to determine the optimal resonant condition that can maximize the power transfer efficiency while satisfying all the rated powers required on each receiver module. The input source voltage and compensation capacitances are selected as design variables to tune up the optimal resonant condition. The power transfer efficiency is set to be maximized as an objective function, and the target rated power for each receiver module is set as the constraint functions. In the proposed method, design variables are iteratively updated through linking the optimization module and the analysis module. After being verified with the “single transmitter-to-a-single-receiver” WPT system, the proposed method is applied to determine the optimal resonant condition for the multi-module WPT systems. The experimental validation demonstrates the performance and potential of the proposed method.