Concept-Enhanced Multi-view Clustering of Document Data

Bassoma Diallo, Jie Hu, Tianrui Li, G. Khan, Chunyan Ji
{"title":"Concept-Enhanced Multi-view Clustering of Document Data","authors":"Bassoma Diallo, Jie Hu, Tianrui Li, G. Khan, Chunyan Ji","doi":"10.1109/ISKE47853.2019.9170436","DOIUrl":null,"url":null,"abstract":"Many works implemented multi-view clustering algorithms in document clustering. One challenging problem in document clustering is the similarity metric. Existing multi-view document clustering methods widely used two measurements: the Cosine similarity and the Euclidean Distance (ED). The first did not consider the magnitude between the two vectors. The second cannot compute the dissimilarity of two vectors that share the same ED. In this paper, we proposed a multi-view document clustering scheme to overcome these drawbacks by calculating the heterogeneity between documents with the same ED while taking into consideration their magnitudes. The experimental results show that the proposed similarity function can measure the similarity between documents more accurately than the existing metrics, and the proposed document clustering scheme goes beyond the limit of several state-of-the-art algorithms.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many works implemented multi-view clustering algorithms in document clustering. One challenging problem in document clustering is the similarity metric. Existing multi-view document clustering methods widely used two measurements: the Cosine similarity and the Euclidean Distance (ED). The first did not consider the magnitude between the two vectors. The second cannot compute the dissimilarity of two vectors that share the same ED. In this paper, we proposed a multi-view document clustering scheme to overcome these drawbacks by calculating the heterogeneity between documents with the same ED while taking into consideration their magnitudes. The experimental results show that the proposed similarity function can measure the similarity between documents more accurately than the existing metrics, and the proposed document clustering scheme goes beyond the limit of several state-of-the-art algorithms.
概念增强的文档数据多视图聚类
许多工作在文档聚类中实现了多视图聚类算法。文档聚类中一个具有挑战性的问题是相似度度量。现有的多视图文档聚类方法广泛采用余弦相似度和欧几里德距离两种度量方法。第一种方法没有考虑两个向量之间的大小。第二种方法无法计算具有相同ED的两个向量的不相似性。在本文中,我们提出了一种多视图文档聚类方案,通过计算具有相同ED的文档之间的异质性,同时考虑它们的大小来克服这些缺点。实验结果表明,本文提出的相似度函数能比现有的度量标准更准确地度量文档之间的相似度,并且本文提出的文档聚类方案超越了现有算法的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信