Adaptive Radar Detection: A Bayesian Approach

A. Maio, A. Farina, Via Claudio
{"title":"Adaptive Radar Detection: A Bayesian Approach","authors":"A. Maio, A. Farina, Via Claudio","doi":"10.1109/RADAR.2007.374291","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of adaptive radar detection in Gaussian disturbance with unknown spectral properties. To this end we resort to a Bayesian approach based on a suitable model for the probability density function of the unknown disturbance covariance matrix. We devise two detectors based on the generalized likelihood ratio test (GLRT) criterion both one-step and two-step. The new decision rules achieve a better performance level than some conventional radar detectors in the presence of heterogeneous scenarios, where a small number of training data is available. Finally they ensure the same performance of the non Bayesian GLRT detectors when the size of the training set is sufficiently large.","PeriodicalId":124475,"journal":{"name":"2006 International Radar Symposium","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Radar Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2007.374291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this paper we consider the problem of adaptive radar detection in Gaussian disturbance with unknown spectral properties. To this end we resort to a Bayesian approach based on a suitable model for the probability density function of the unknown disturbance covariance matrix. We devise two detectors based on the generalized likelihood ratio test (GLRT) criterion both one-step and two-step. The new decision rules achieve a better performance level than some conventional radar detectors in the presence of heterogeneous scenarios, where a small number of training data is available. Finally they ensure the same performance of the non Bayesian GLRT detectors when the size of the training set is sufficiently large.
自适应雷达探测:贝叶斯方法
本文研究了未知高斯干扰下的自适应雷达检测问题。为此,我们采用基于一个合适模型的贝叶斯方法来描述未知干扰协方差矩阵的概率密度函数。我们设计了两种基于广义似然比检验(GLRT)准则的检测器,即一步检测器和两步检测器。在具有少量训练数据的异构场景下,新的决策规则比一些传统的雷达检测器达到了更好的性能水平。最后,当训练集足够大时,它们保证了非贝叶斯GLRT检测器的相同性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信