Imaging applications of stochastic minimal graphs

A. Hero, B. Ma, O. Michel
{"title":"Imaging applications of stochastic minimal graphs","authors":"A. Hero, B. Ma, O. Michel","doi":"10.1109/ICIP.2001.958181","DOIUrl":null,"url":null,"abstract":"This paper presents an overview of some of the theory and application of stochastic minimal graphs in the context of entropy estimation for imaging applications. Stochastic graphs which span a set of extracted image features can be constructed to yield consistent estimators of Jensen's entropy difference for between pairs of images. Unlike traditional plug-in entropy estimates based on density estimation, stochastic graph methods provide direct estimates of these quantities. We review the stochastic graph approach to entropy estimation, compare convergence rates to that of plug-in estimators, and discuss a geo-registration application.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an overview of some of the theory and application of stochastic minimal graphs in the context of entropy estimation for imaging applications. Stochastic graphs which span a set of extracted image features can be constructed to yield consistent estimators of Jensen's entropy difference for between pairs of images. Unlike traditional plug-in entropy estimates based on density estimation, stochastic graph methods provide direct estimates of these quantities. We review the stochastic graph approach to entropy estimation, compare convergence rates to that of plug-in estimators, and discuss a geo-registration application.
随机极小图的成像应用
本文概述了随机极小图在熵估计成像应用中的一些理论和应用。随机图跨越一组提取的图像特征可以构造,以产生对图像之间的詹森熵差的一致估计。与传统的基于密度估计的插件熵估计不同,随机图方法提供了这些数量的直接估计。我们回顾了随机图方法的熵估计,比较了收敛速度的插件估计,并讨论了一个地质登记的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信