Text Analysis for Honeypot Misuse Inference

Toivo Herman Kamati, D. Jat, Saurabh Chamotra
{"title":"Text Analysis for Honeypot Misuse Inference","authors":"Toivo Herman Kamati, D. Jat, Saurabh Chamotra","doi":"10.1109/CITISIA50690.2020.9371771","DOIUrl":null,"url":null,"abstract":"Transformation of raw text is required for computational text analysis using Natural Language Processing methods. Computational text analysis leverage on human brain limitations to automatically index documents for retrieval and topic generation for topic distribution correlations in corpus of voluminous documents. Natural language non-parametric and parametric Topic modeling with Expectancy Maximization and Gibbs sampling render technique to build Machine Learning models for evaluation with log-likelihood, topic coherence and coefficient of determination of held-out document. This research extends the concept of Natural Language Processing to automate analysis of High interaction honeypot system call documents to deduce system resources misuse by malcode during real-time engagement with the user-space applications of the deployed honeypot.","PeriodicalId":145272,"journal":{"name":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","volume":"1995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA50690.2020.9371771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Transformation of raw text is required for computational text analysis using Natural Language Processing methods. Computational text analysis leverage on human brain limitations to automatically index documents for retrieval and topic generation for topic distribution correlations in corpus of voluminous documents. Natural language non-parametric and parametric Topic modeling with Expectancy Maximization and Gibbs sampling render technique to build Machine Learning models for evaluation with log-likelihood, topic coherence and coefficient of determination of held-out document. This research extends the concept of Natural Language Processing to automate analysis of High interaction honeypot system call documents to deduce system resources misuse by malcode during real-time engagement with the user-space applications of the deployed honeypot.
蜜罐误用推理的文本分析
使用自然语言处理方法进行计算文本分析需要对原始文本进行转换。计算文本分析利用人脑的局限性,在海量文档的语料库中自动索引文档进行检索,自动生成主题分布相关性。自然语言非参数和参数主题建模与期望最大化和吉布斯采样渲染技术,建立机器学习模型的评估与对数似然,主题一致性和确定系数的搁置文件。本研究扩展了自然语言处理的概念,以自动分析高交互蜜罐系统调用文档,以推断在与已部署的蜜罐的用户空间应用程序实时交互期间因恶意代码而误用的系统资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信