Measuring Hybrid SC-FCM Clustering with Cluster Validity Index

Victor Utomo, Dhendra Marutho
{"title":"Measuring Hybrid SC-FCM Clustering with Cluster Validity Index","authors":"Victor Utomo, Dhendra Marutho","doi":"10.1109/ISRITI.2018.8864459","DOIUrl":null,"url":null,"abstract":"Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.","PeriodicalId":162781,"journal":{"name":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI.2018.8864459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.
用聚类效度指标衡量SC-FCM混合聚类
聚类是根据数据中每个元素的相似度将数据分成不同的组。为了验证聚类的有效性,引入了聚类有效性指标。混合SC-FCM聚类方法是一种克服模糊c均值聚类缺点的聚类技术。虽然混合SC-FCM是一种很有前途的方法,但尚未对结果聚类进行有效性测量。本文研究了混合SC-FCM方法的聚类效度指标。研究中使用的聚类有效性指标有划分系数、划分熵和Xen Beni指数。研究结果喜忧参半。尽管Hybrid SC-FCM方法未能如建议的那样找到最佳簇数,但这表明Hybrid SC-FCM在提供初始质心方面能够超越传统的FCM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信