{"title":"Measuring Hybrid SC-FCM Clustering with Cluster Validity Index","authors":"Victor Utomo, Dhendra Marutho","doi":"10.1109/ISRITI.2018.8864459","DOIUrl":null,"url":null,"abstract":"Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.","PeriodicalId":162781,"journal":{"name":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI.2018.8864459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.