A Platform Agnostic Dual-Strand Hate Speech Detector

J. Meyer, Björn Gambäck
{"title":"A Platform Agnostic Dual-Strand Hate Speech Detector","authors":"J. Meyer, Björn Gambäck","doi":"10.18653/v1/W19-3516","DOIUrl":null,"url":null,"abstract":"Hate speech detectors must be applicable across a multitude of services and platforms, and there is hence a need for detection approaches that do not depend on any information specific to a given platform. For instance, the information stored about the text’s author may differ between services, and so using such data would reduce a system’s general applicability. The paper thus focuses on using exclusively text-based input in the detection, in an optimised architecture combining Convolutional Neural Networks and Long Short-Term Memory-networks. The hate speech detector merges two strands with character n-grams and word embeddings to produce the final classification, and is shown to outperform comparable previous approaches.","PeriodicalId":230845,"journal":{"name":"Proceedings of the Third Workshop on Abusive Language Online","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Abusive Language Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Hate speech detectors must be applicable across a multitude of services and platforms, and there is hence a need for detection approaches that do not depend on any information specific to a given platform. For instance, the information stored about the text’s author may differ between services, and so using such data would reduce a system’s general applicability. The paper thus focuses on using exclusively text-based input in the detection, in an optimised architecture combining Convolutional Neural Networks and Long Short-Term Memory-networks. The hate speech detector merges two strands with character n-grams and word embeddings to produce the final classification, and is shown to outperform comparable previous approaches.
一个平台不可知论的双链仇恨语音检测器
仇恨言论检测器必须适用于多种服务和平台,因此需要不依赖于特定平台的任何信息的检测方法。例如,存储的关于文本作者的信息可能因服务而异,因此使用此类数据会降低系统的一般适用性。因此,本文的重点是在结合卷积神经网络和长短期记忆网络的优化架构中,在检测中专门使用基于文本的输入。仇恨语音检测器将两条链与字符n-图和单词嵌入合并在一起,以产生最终的分类,并且被证明优于之前的类似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信