Preference and weak interval-valued operator in decision making problem

Barbara Pekala, P. Drygas, M. Knap, Dorota Gil, Bogdan Kwiatkowski
{"title":"Preference and weak interval-valued operator in decision making problem","authors":"Barbara Pekala, P. Drygas, M. Knap, Dorota Gil, Bogdan Kwiatkowski","doi":"10.1109/FUZZ45933.2021.9494565","DOIUrl":null,"url":null,"abstract":"In this paper, we concentrate on study interval-valued fuzzy relations in decision problems based on preference relations, and a preference structure making up of the strict preference relation, indifference relation, and incomparability relation which may be defined with the use of interval-valued aggregation and interval-valued fuzzy negation function. We analyze the influence of some new types of fusion functions on the effectiveness of the decision process. The studies concern different aggregation classes due to the type of monotonicity/order used.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we concentrate on study interval-valued fuzzy relations in decision problems based on preference relations, and a preference structure making up of the strict preference relation, indifference relation, and incomparability relation which may be defined with the use of interval-valued aggregation and interval-valued fuzzy negation function. We analyze the influence of some new types of fusion functions on the effectiveness of the decision process. The studies concern different aggregation classes due to the type of monotonicity/order used.
决策问题中的偏好与弱区间值算子
本文主要研究了基于偏好关系的决策问题中的区间值模糊关系,以及一种由严格偏好关系、无差异关系和不可比较关系组成的偏好结构,这种偏好结构可以用区间值聚合和区间值模糊否定函数来定义。分析了几种新型的融合函数对决策过程有效性的影响。由于使用的单调性/顺序类型不同,研究涉及不同的聚合类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信