Vaccinating a Population is a Changing Programming Problem

Sumaiya Amin, S. Houghten, J. Hughes
{"title":"Vaccinating a Population is a Changing Programming Problem","authors":"Sumaiya Amin, S. Houghten, J. Hughes","doi":"10.1109/CIBCB49929.2021.9562943","DOIUrl":null,"url":null,"abstract":"How best to apply vaccines to a population is an open problem. It is trivial to derive intuitive strategies, but until tested, their efficacy is not known. This problem is particularly challenging when considering the dynamics of social contact networks and their changes over time. A system for automatically discovering tested vaccination strategies with evolutionary computation has been improved upon to include additional graph metrics and to generate vaccination strategies for dynamic graphs, something that is expected of real social networks within communities. The system's ability to generate effective strategies was demonstrated along with a comparison of the strategies developed when fit to a static graph versus a dynamic graph. It was observed that the additional computational resources required to generate strategies on a dynamic graph may not be necessary as strategies developed for static graphs performed similarly well; however, the authors are careful to acknowledge that results may differ significantly when adjusting the systems many parameters.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

How best to apply vaccines to a population is an open problem. It is trivial to derive intuitive strategies, but until tested, their efficacy is not known. This problem is particularly challenging when considering the dynamics of social contact networks and their changes over time. A system for automatically discovering tested vaccination strategies with evolutionary computation has been improved upon to include additional graph metrics and to generate vaccination strategies for dynamic graphs, something that is expected of real social networks within communities. The system's ability to generate effective strategies was demonstrated along with a comparison of the strategies developed when fit to a static graph versus a dynamic graph. It was observed that the additional computational resources required to generate strategies on a dynamic graph may not be necessary as strategies developed for static graphs performed similarly well; however, the authors are careful to acknowledge that results may differ significantly when adjusting the systems many parameters.
为人群接种疫苗是一个不断变化的规划问题
如何最好地将疫苗应用于人群是一个悬而未决的问题。推导出直观的策略是微不足道的,但在测试之前,它们的功效是未知的。当考虑到社交网络的动态及其随时间的变化时,这个问题尤其具有挑战性。通过进化计算自动发现已测试的疫苗接种策略的系统已经得到改进,包括额外的图形度量,并为动态图形生成疫苗接种策略,这是对社区内真实社会网络的期望。演示了系统生成有效策略的能力,并比较了适合静态图和动态图时开发的策略。有人指出,在动态图上生成策略所需的额外计算资源可能没有必要,因为为静态图开发的策略表现同样良好;然而,作者谨慎地承认,当调整系统的许多参数时,结果可能会有很大的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信