RNN-CNN MODEL:A Bi-directional Long Short-Term Memory Deep Learning Network For Story Point Estimation

Bhaskar Marapelli, Anil Carie, S. Islam
{"title":"RNN-CNN MODEL:A Bi-directional Long Short-Term Memory Deep Learning Network For Story Point Estimation","authors":"Bhaskar Marapelli, Anil Carie, S. Islam","doi":"10.1109/CITISIA50690.2020.9371770","DOIUrl":null,"url":null,"abstract":"In recent years, an increased interest in the adaption of agile software development by companies. Using iterative methodology enables them to do issue-based estimation and respond quickly to changes in the requirements. Agile methodology adopts Story Point Approach to estimate the effort that involves a user story or a resolving issue. Unlike traditional estimation, Agile Methodology focuses on individual programming task estimation instead of whole project estimation. In this work, we approach story point estimation using the RNN-CNN model. We consider the contextual information in a user story in both forward and backward directions to build the RNN-CNN model. The proposed model adopts a Bi-directional Long Short-Term Memory (BiLSTM), a tree-structured Recurrent Neural Network (RNN) with Convolutional Neural Network (CNN), tries to predict a story point for a user story description. Here, BiLSTM forward and backward feature learning will make network preserve the sequence data and CNN makes feature extraction accurate. The experimental results show the improvement in estimating the story points with a user story as an input using the proposed RNN-CNN. Furthermore, the analysis shows that the proposed RNN-CNN model outperforms the existing model and gives 74.2 % R2 Score on the Bamboo data set.","PeriodicalId":145272,"journal":{"name":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA50690.2020.9371770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In recent years, an increased interest in the adaption of agile software development by companies. Using iterative methodology enables them to do issue-based estimation and respond quickly to changes in the requirements. Agile methodology adopts Story Point Approach to estimate the effort that involves a user story or a resolving issue. Unlike traditional estimation, Agile Methodology focuses on individual programming task estimation instead of whole project estimation. In this work, we approach story point estimation using the RNN-CNN model. We consider the contextual information in a user story in both forward and backward directions to build the RNN-CNN model. The proposed model adopts a Bi-directional Long Short-Term Memory (BiLSTM), a tree-structured Recurrent Neural Network (RNN) with Convolutional Neural Network (CNN), tries to predict a story point for a user story description. Here, BiLSTM forward and backward feature learning will make network preserve the sequence data and CNN makes feature extraction accurate. The experimental results show the improvement in estimating the story points with a user story as an input using the proposed RNN-CNN. Furthermore, the analysis shows that the proposed RNN-CNN model outperforms the existing model and gives 74.2 % R2 Score on the Bamboo data set.
RNN-CNN模型:用于故事点估计的双向长短期记忆深度学习网络
近年来,公司对敏捷软件开发的适应越来越感兴趣。使用迭代方法使他们能够进行基于问题的评估,并快速响应需求中的变化。敏捷方法采用故事点方法来评估涉及用户故事或解决问题的工作量。与传统的评估不同,敏捷方法侧重于单个编程任务的评估,而不是整个项目的评估。在这项工作中,我们使用RNN-CNN模型进行故事点估计。我们考虑用户故事中的上下文信息在正向和向后两个方向来构建RNN-CNN模型。该模型采用双向长短期记忆(BiLSTM)、树结构递归神经网络(RNN)和卷积神经网络(CNN)来预测用户故事描述的故事点。其中,BiLSTM的前向和后向特征学习将使网络保持序列数据,CNN使特征提取更加准确。实验结果表明,使用本文提出的RNN-CNN算法,在以用户故事为输入的故事点估计方面有很大的改进。此外,分析表明,所提出的RNN-CNN模型优于现有模型,在Bamboo数据集上的R2得分为74.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信