Good pervasive computing studies require laborious data labeling efforts: Our experience in activity recognition and indoor positioning studies

T. Maekawa
{"title":"Good pervasive computing studies require laborious data labeling efforts: Our experience in activity recognition and indoor positioning studies","authors":"T. Maekawa","doi":"10.1109/PERCOMW.2017.7917506","DOIUrl":null,"url":null,"abstract":"Preparing and labeling sensing data are necessary when we develop state-of-the-art sensing devices or methods in our studies. Since developing and proposing new sensing devices or modalities are important in the pervasive computing and ubicomp research communities, we need to provide high quality labeled data by making use of our limited time whenever we develop a new sensing device. In this keynote talk, we first introduce our recent studies on activity recognition and indoor positioning based on machine learning. Later, we discuss important aspects of producing labeled data and share our experiences gathered during our research activities.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Preparing and labeling sensing data are necessary when we develop state-of-the-art sensing devices or methods in our studies. Since developing and proposing new sensing devices or modalities are important in the pervasive computing and ubicomp research communities, we need to provide high quality labeled data by making use of our limited time whenever we develop a new sensing device. In this keynote talk, we first introduce our recent studies on activity recognition and indoor positioning based on machine learning. Later, we discuss important aspects of producing labeled data and share our experiences gathered during our research activities.
良好的普适计算研究需要艰苦的数据标记工作:我们在活动识别和室内定位研究方面的经验
当我们在研究中开发最先进的传感设备或方法时,准备和标记传感数据是必要的。由于开发和提出新的传感设备或模式在普适计算和通用计算机研究界非常重要,因此每当我们开发新的传感设备时,我们需要利用有限的时间提供高质量的标记数据。在本次主题演讲中,我们首先介绍了我们最近在基于机器学习的活动识别和室内定位方面的研究。随后,我们讨论了产生标签数据的重要方面,并分享了我们在研究活动中收集的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信