Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong
{"title":"End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning","authors":"Minghui Chen, Pingping Zhang, Z. Chen, Yun Zhang, Xu Wang, S. Kwong","doi":"10.1109/ICIP46576.2022.9898073","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a novel framework to exploit and utilize the shared information inner RGB-D data for efficient depth map compression. Two main codecs, designed based on the existing end-to-end image compression network, are adopted for RGB image compression and enhanced depth image compression with RGB-to-Depth structure prior, respectively. In particular, we propose a Structure Prior Fusion (SPF) module to extract the structure information from both RGB and depth codecs at multi-scale feature levels and fuse the cross-modal feature to generate more efficient structure priors for depth compression. Extensive experiments show that the proposed framework can achieve competitive rate-distortion performance as well as RGB-D task-specific performance at depth map compression compared with the direct compression scheme.