Parameter estimation from tomographic data using self-organising maps

T. York, Aniediobong Jonah Ukpong, S. Mylvaganam, Yanyun Ru
{"title":"Parameter estimation from tomographic data using self-organising maps","authors":"T. York, Aniediobong Jonah Ukpong, S. Mylvaganam, Yanyun Ru","doi":"10.1109/IST.2012.6295588","DOIUrl":null,"url":null,"abstract":"The paper reports on the potential of using a type of artificial neural network, the self-organising map, for processing tomographic data from pipe separators to estimate interface levels. This is motivated by a desire to estimate process parameters without recourse to image reconstruction. Results show direct quantitative estimation of volume fraction of two-component flow mixtures containing oil and water from electrical capacitance tomography measurements. Parameter extraction from the trained feature map is realised using Gaussian mixture modelling. Parametric information of a mixture is determined by using the probability estimation of sample map and comparing the result with the model's topology. The SOM Toolbox in MATLAB was used for training and developing the models. After preparing the training data the SOM mixture model can be trained in less than 20 seconds. 75% of the two-component mixture test samples are classified within 5% of the sample's true composition.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper reports on the potential of using a type of artificial neural network, the self-organising map, for processing tomographic data from pipe separators to estimate interface levels. This is motivated by a desire to estimate process parameters without recourse to image reconstruction. Results show direct quantitative estimation of volume fraction of two-component flow mixtures containing oil and water from electrical capacitance tomography measurements. Parameter extraction from the trained feature map is realised using Gaussian mixture modelling. Parametric information of a mixture is determined by using the probability estimation of sample map and comparing the result with the model's topology. The SOM Toolbox in MATLAB was used for training and developing the models. After preparing the training data the SOM mixture model can be trained in less than 20 seconds. 75% of the two-component mixture test samples are classified within 5% of the sample's true composition.
利用自组织图对层析数据进行参数估计
这篇论文报告了使用一种人工神经网络,即自组织图,来处理来自管道分离器的层析数据以估计界面水平的潜力。这样做的动机是希望在不依赖图像重建的情况下估计过程参数。结果表明,电容层析测量可以直接定量估计含油和含水的双组分流动混合物的体积分数。利用高斯混合建模实现对训练特征映射的参数提取。利用样本图的概率估计,并将结果与模型的拓扑结构进行比较,确定混合物的参数信息。利用MATLAB中的SOM工具箱对模型进行训练和开发。在准备好训练数据后,SOM混合模型可以在不到20秒的时间内完成训练。75%的双组分混合物试验样品被分类在样品真实成分的5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信