{"title":"Efficient Deep CNN-BiLSTM Model for Network Intrusion Detection","authors":"Jay Sinha, M. Manollas","doi":"10.1145/3430199.3430224","DOIUrl":null,"url":null,"abstract":"The need for Network Intrusion Detection systems has risen since usage of cloud technologies has become mainstream. With the ever growing network traffic, Network Intrusion Detection is a critical part of network security and a very efficient NIDS is a must, given new variety of attack arises frequently. These Intrusion Detection systems are built on either a pattern matching system or AI/ML based anomaly detection system. Pattern matching methods usually have a high False Positive Rates whereas the AI/ML based method, relies on finding metric/feature or correlation between set of metrics/features to predict the possibility of an attack. The most common of these is KNN, SVM etc., operate on a limited set of features and have less accuracy and still suffer from higher False Positive Rates. In this paper, we propose a deep learning model combining the distinct strengths of a Convolutional Neural Network and a Bi-directional LSTM to incorporate learning of spatial and temporal features of the data. For this paper, we use publicly available datasets NSL-KDD and UNSW-NB15 to train and test the model. The proposed model offers a high detection rate and comparatively lower False Positive Rate. The proposed model performs better than many state-of-the-art Network Intrusion Detection systems leveraging Machine Learning/Deep Learning models.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"68 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The need for Network Intrusion Detection systems has risen since usage of cloud technologies has become mainstream. With the ever growing network traffic, Network Intrusion Detection is a critical part of network security and a very efficient NIDS is a must, given new variety of attack arises frequently. These Intrusion Detection systems are built on either a pattern matching system or AI/ML based anomaly detection system. Pattern matching methods usually have a high False Positive Rates whereas the AI/ML based method, relies on finding metric/feature or correlation between set of metrics/features to predict the possibility of an attack. The most common of these is KNN, SVM etc., operate on a limited set of features and have less accuracy and still suffer from higher False Positive Rates. In this paper, we propose a deep learning model combining the distinct strengths of a Convolutional Neural Network and a Bi-directional LSTM to incorporate learning of spatial and temporal features of the data. For this paper, we use publicly available datasets NSL-KDD and UNSW-NB15 to train and test the model. The proposed model offers a high detection rate and comparatively lower False Positive Rate. The proposed model performs better than many state-of-the-art Network Intrusion Detection systems leveraging Machine Learning/Deep Learning models.