Superresolution of MRI brain images using unbalanced 3D Dense-U-Net network

M. Kolarík, Radim Burget, V. Uher, Lukas Povoda
{"title":"Superresolution of MRI brain images using unbalanced 3D Dense-U-Net network","authors":"M. Kolarík, Radim Burget, V. Uher, Lukas Povoda","doi":"10.1109/TSP.2019.8768829","DOIUrl":null,"url":null,"abstract":"This paper proposes an unbalanced end-to-end trained 3D Dense-U-Net network for brain MRI images superresolution. We evaluated capabilites of the proposed architecture on upsampling the MRI brain scans in the factor of 2, 4 and 8 and compared the results with resampled images using lanczos, spline and bilinear interpolation achieving best results. While the network does not exceed superresolution capabilites of state-of-the-art GAN networks, it does not require large dataset, is easy to train and capable of processing 3D images in resolution suitable for medical image processing.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes an unbalanced end-to-end trained 3D Dense-U-Net network for brain MRI images superresolution. We evaluated capabilites of the proposed architecture on upsampling the MRI brain scans in the factor of 2, 4 and 8 and compared the results with resampled images using lanczos, spline and bilinear interpolation achieving best results. While the network does not exceed superresolution capabilites of state-of-the-art GAN networks, it does not require large dataset, is easy to train and capable of processing 3D images in resolution suitable for medical image processing.
利用非平衡3D Dense-U-Net网络实现MRI脑图像的超分辨率
提出了一种用于脑MRI超分辨率图像的非平衡端到端训练三维Dense-U-Net网络。我们以2、4和8为因子评估了所提出的架构对MRI脑部扫描进行上采样的能力,并将结果与使用lanczos、样条和双线性插值进行重采样的图像进行了比较,获得了最佳结果。虽然该网络不超过最先进的GAN网络的超分辨率能力,但它不需要大型数据集,易于训练,并且能够以适合医学图像处理的分辨率处理3D图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信