{"title":"Superresolution of MRI brain images using unbalanced 3D Dense-U-Net network","authors":"M. Kolarík, Radim Burget, V. Uher, Lukas Povoda","doi":"10.1109/TSP.2019.8768829","DOIUrl":null,"url":null,"abstract":"This paper proposes an unbalanced end-to-end trained 3D Dense-U-Net network for brain MRI images superresolution. We evaluated capabilites of the proposed architecture on upsampling the MRI brain scans in the factor of 2, 4 and 8 and compared the results with resampled images using lanczos, spline and bilinear interpolation achieving best results. While the network does not exceed superresolution capabilites of state-of-the-art GAN networks, it does not require large dataset, is easy to train and capable of processing 3D images in resolution suitable for medical image processing.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes an unbalanced end-to-end trained 3D Dense-U-Net network for brain MRI images superresolution. We evaluated capabilites of the proposed architecture on upsampling the MRI brain scans in the factor of 2, 4 and 8 and compared the results with resampled images using lanczos, spline and bilinear interpolation achieving best results. While the network does not exceed superresolution capabilites of state-of-the-art GAN networks, it does not require large dataset, is easy to train and capable of processing 3D images in resolution suitable for medical image processing.