Subject Wise Motor Imagery Classification from EEG Data Using Transfer Learning

Afaq Ahmad Khan, A. Hassan, Muhammad Talha Jahangir
{"title":"Subject Wise Motor Imagery Classification from EEG Data Using Transfer Learning","authors":"Afaq Ahmad Khan, A. Hassan, Muhammad Talha Jahangir","doi":"10.1109/INMIC56986.2022.9972989","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has no doubt virtually helped in nearly all fields of life, including medical sciences. ML models are now being trained, tested and developed with the help of information gained from Electroencephalogram (EEG) Signals. Neural Networks (NN) are being used specifically in this regard to exploit their image classification ability. A special class of NN called Transfer Learning (TL), is used to enhance the capability of NNs. In this paper, EEG signals are extracted and used to classify Left or Right Motor Images of the brain using Inception V3 and VGG 16 models. We try to enhance the accuracy of these TL Models by exploiting a different methodology as compared to other available statistical methods available in the research community. For the said purpose, a dataset from Brain-Computer Interface (BCI) Competition IV 2b was used. EEG signals are extracted and transformed into Short Time Fourier Transform (STFT) images. These STFT images are labeled with either Left or Right Motor Imagery (MI) Class. The transfer learning models are trained using these STFT images and results are also compared with a state-of-the art research, implementing Capsule Networks.","PeriodicalId":404424,"journal":{"name":"2022 24th International Multitopic Conference (INMIC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Multitopic Conference (INMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC56986.2022.9972989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) has no doubt virtually helped in nearly all fields of life, including medical sciences. ML models are now being trained, tested and developed with the help of information gained from Electroencephalogram (EEG) Signals. Neural Networks (NN) are being used specifically in this regard to exploit their image classification ability. A special class of NN called Transfer Learning (TL), is used to enhance the capability of NNs. In this paper, EEG signals are extracted and used to classify Left or Right Motor Images of the brain using Inception V3 and VGG 16 models. We try to enhance the accuracy of these TL Models by exploiting a different methodology as compared to other available statistical methods available in the research community. For the said purpose, a dataset from Brain-Computer Interface (BCI) Competition IV 2b was used. EEG signals are extracted and transformed into Short Time Fourier Transform (STFT) images. These STFT images are labeled with either Left or Right Motor Imagery (MI) Class. The transfer learning models are trained using these STFT images and results are also compared with a state-of-the art research, implementing Capsule Networks.
基于迁移学习的脑电数据运动意象分类
毫无疑问,机器学习(ML)几乎在生活的所有领域都有帮助,包括医学。机器学习模型现在正在通过从脑电图(EEG)信号中获得的信息进行训练、测试和开发。神经网络(NN)在这方面被专门用于开发其图像分类能力。一种特殊的神经网络称为迁移学习(TL),用于增强神经网络的能力。本文采用Inception V3和VGG 16模型提取脑电信号,并将其用于脑左、右运动图像的分类。我们试图通过利用不同的方法来提高这些TL模型的准确性,与研究界其他可用的统计方法相比。为了上述目的,使用了脑机接口(BCI)竞赛IV 2b的数据集。对脑电信号进行提取并进行短时傅里叶变换(STFT)。这些STFT图像被标记为左或右运动图像(MI)类。使用这些STFT图像训练迁移学习模型,并将结果与实施胶囊网络的最新研究进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信