DETECTION OF HOTSPOTS FOR THREE-DIMENSIONAL SPATIAL DATA AND ITS APPLICATION TO ENVIRONMENTAL POLLUTION DATA

Fumio Ishioka, K. Kurihara, H. Suito, Y. Horikawa, Y. Ono
{"title":"DETECTION OF HOTSPOTS FOR THREE-DIMENSIONAL SPATIAL DATA AND ITS APPLICATION TO ENVIRONMENTAL POLLUTION DATA","authors":"Fumio Ishioka, K. Kurihara, H. Suito, Y. Horikawa, Y. Ono","doi":"10.3107/JESSS.1.15","DOIUrl":null,"url":null,"abstract":"We address the problem of detecting areas with markedly high values (hotspots) in spatial lattice data. Spatial lattice data are observations that include several spatial areas supplemented by neighboring information. The spatial scan statistics is an effective tool for hotspot detection. Echelon analysis is an analytical method to investigate the phase-structure of spatial data both systematically and objectively. In this paper, we describe the structure of spatial lattice data using echelon analysis and detect hotspots based on the echelon structure. As an application, we apply this method to simulation data of leachate accidents in final-disposal sites and detect considerably high-density pollution areas.","PeriodicalId":285932,"journal":{"name":"Journal of Environmental Science for Sustainable Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science for Sustainable Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3107/JESSS.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We address the problem of detecting areas with markedly high values (hotspots) in spatial lattice data. Spatial lattice data are observations that include several spatial areas supplemented by neighboring information. The spatial scan statistics is an effective tool for hotspot detection. Echelon analysis is an analytical method to investigate the phase-structure of spatial data both systematically and objectively. In this paper, we describe the structure of spatial lattice data using echelon analysis and detect hotspots based on the echelon structure. As an application, we apply this method to simulation data of leachate accidents in final-disposal sites and detect considerably high-density pollution areas.
三维空间数据热点检测及其在环境污染数据中的应用
我们解决了在空间点阵数据中检测具有显著高值(热点)区域的问题。空间点阵数据是包括由相邻信息补充的若干空间区域的观测值。空间扫描统计信息是热点检测的有效工具。梯队分析是一种系统、客观地研究空间数据相结构的分析方法。本文利用梯队分析来描述空间点阵数据的结构,并基于梯队结构检测热点。作为一种应用,我们将该方法应用于最终处置场地的渗滤液事故模拟数据,并检测出相当高密度的污染区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信