Improved text-independent speaker identification system for real time applications

Nagwa M. Aboelenein, K. Amin, Mina I. S. Ibrahim, M. Hadhoud
{"title":"Improved text-independent speaker identification system for real time applications","authors":"Nagwa M. Aboelenein, K. Amin, Mina I. S. Ibrahim, M. Hadhoud","doi":"10.1109/JEC-ECC.2016.7518967","DOIUrl":null,"url":null,"abstract":"Speaker identification identifies the speaker among a set of users by matching against a set of voiceprints. In speaker identification, the identification time depends on the number of feature vectors, their dimensionality and the number of speakers. In this paper, text independent speaker identification model is developed by taking in MFCCs with VQ to obtain pressed feature vectors without losing much information, and the numbers of speakers are reduced in the test by gender detection algorithm. Gaussian Mixture Model (GMM) is used a modeling technique. Results show that proposed approach always yields better improvements in accuracy and brings almost 50% reduces in time processing.","PeriodicalId":362288,"journal":{"name":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2016.7518967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Speaker identification identifies the speaker among a set of users by matching against a set of voiceprints. In speaker identification, the identification time depends on the number of feature vectors, their dimensionality and the number of speakers. In this paper, text independent speaker identification model is developed by taking in MFCCs with VQ to obtain pressed feature vectors without losing much information, and the numbers of speakers are reduced in the test by gender detection algorithm. Gaussian Mixture Model (GMM) is used a modeling technique. Results show that proposed approach always yields better improvements in accuracy and brings almost 50% reduces in time processing.
改进了与文本无关的说话人识别系统,用于实时应用
说话人识别通过与一组声纹相匹配来在一组用户中识别说话人。在说话人识别中,识别时间取决于特征向量的个数、维数和说话人的数量。本文通过引入带有VQ的mfccc,在不丢失大量信息的情况下获得压制特征向量,建立了与文本无关的说话人识别模型,并通过性别检测算法减少了测试中的说话人数量。采用高斯混合模型(GMM)作为建模技术。结果表明,该方法总能提高精度,并使处理时间减少近50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信