The Validity of Using Technical Indicators When forecasting Stock Prices Using Deep Learning Models: Empirical Evidence Using Saudi Stocks

S. Mohammed
{"title":"The Validity of Using Technical Indicators When forecasting Stock Prices Using Deep Learning Models: Empirical Evidence Using Saudi Stocks","authors":"S. Mohammed","doi":"10.1109/CICN56167.2022.10008298","DOIUrl":null,"url":null,"abstract":"Many researchers use deep learning and technical indicators to forecast future stock prices. There are several hundred technical indicators and each one of them has a number of parameters. Finding the optimal combination of indicators with their optimal parameter values is very challenging. The aim of this work is to study if there is any benefit of feeding deep learning models with technical indicators instead of only feeding them with price and volume. After all, technical indicators are just functions of price and volume. Empirical studies done in this work using Saudi stocks show that deep learning models can benefit from technical indicators only if the right combination of technical indicators together with their right parameter values are used. The experimental results show that the right combination of technical indicators can improve the forecasting accuracy of deep learning modules. They also showed that using the wrong combination of indicators is worse than using no indicator even if they were assigned the best parameter values.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many researchers use deep learning and technical indicators to forecast future stock prices. There are several hundred technical indicators and each one of them has a number of parameters. Finding the optimal combination of indicators with their optimal parameter values is very challenging. The aim of this work is to study if there is any benefit of feeding deep learning models with technical indicators instead of only feeding them with price and volume. After all, technical indicators are just functions of price and volume. Empirical studies done in this work using Saudi stocks show that deep learning models can benefit from technical indicators only if the right combination of technical indicators together with their right parameter values are used. The experimental results show that the right combination of technical indicators can improve the forecasting accuracy of deep learning modules. They also showed that using the wrong combination of indicators is worse than using no indicator even if they were assigned the best parameter values.
使用深度学习模型预测股票价格时使用技术指标的有效性:使用沙特股票的经验证据
许多研究人员使用深度学习和技术指标来预测未来的股票价格。有几百项技术指标,每一项指标都有若干参数。找到指标的最佳组合及其最优参数值是非常具有挑战性的。这项工作的目的是研究给深度学习模型提供技术指标,而不是只提供价格和数量,是否有任何好处。毕竟,技术指标只是价格和量的函数。利用沙特股票进行的实证研究表明,深度学习模型只有在正确使用技术指标及其正确参数值的情况下才能从技术指标中受益。实验结果表明,正确的技术指标组合可以提高深度学习模块的预测精度。他们还表明,使用错误的指标组合比不使用指标更糟糕,即使他们被分配了最佳参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信