{"title":"Optimal Peak-Minimizing Online Algorithms for Large-Load Users with Energy Storage","authors":"Yanfang Mo, Qiulin Lin, Minghua Chen, S. Qin","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484511","DOIUrl":null,"url":null,"abstract":"The peak-demand charge motivates large-load customers to flatten their demand curves, while their self-owned renewable generations aggravate demand fluctuations. Thus, it is attractive to utilize energy storage for shaping real-time loads and reducing electricity bills. In this paper, we propose the first peak-aware competitive online algorithm for leveraging stored energy (e.g., in fuel cells) to minimize peak-demand charges. Our algorithm decides the discharging quantity slot by slot to maintain the optimal worst-case performance guarantee (namely, competitive ratio) among all deterministic online algorithms. Interestingly, we show that the best competitive ratio can be computed by solving a linear number of linear-fractional problems. We can also extend our competitive algorithm and analysis to improve the average-case performance and consider short-term prediction.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The peak-demand charge motivates large-load customers to flatten their demand curves, while their self-owned renewable generations aggravate demand fluctuations. Thus, it is attractive to utilize energy storage for shaping real-time loads and reducing electricity bills. In this paper, we propose the first peak-aware competitive online algorithm for leveraging stored energy (e.g., in fuel cells) to minimize peak-demand charges. Our algorithm decides the discharging quantity slot by slot to maintain the optimal worst-case performance guarantee (namely, competitive ratio) among all deterministic online algorithms. Interestingly, we show that the best competitive ratio can be computed by solving a linear number of linear-fractional problems. We can also extend our competitive algorithm and analysis to improve the average-case performance and consider short-term prediction.