A Covariance Matrix Adaptation Evolution Strategy Based on Cooperative Co-Evolutionary Framework Using Delta Grouping for Large-Scale Dynamic Economic Dispatch
{"title":"A Covariance Matrix Adaptation Evolution Strategy Based on Cooperative Co-Evolutionary Framework Using Delta Grouping for Large-Scale Dynamic Economic Dispatch","authors":"Qun Niu, Likun Wang, Ming-Sian You","doi":"10.1145/3426826.3426849","DOIUrl":null,"url":null,"abstract":"The increasing complexity of modern power systems has led to the emergence of large-scale dynamic economic dispatch (DED) problems. To solve a large-scale DED problem with high-dimensional decision variables and various constraints is still a challenge using most existing evolutionary algorithms. In this paper, we propose a covariance matrix adaptation evolution strategy based on cooperative co-evolutionary framework (CC-CMA-ES) using delta grouping for solving large-scale DED problem. The experiment results suggest that the CC-CMA-ES is a fast and accurate approach for large-scale DED problems in terms of computation time, solution quality and convergence speed. Integrating CMA-ES into CC the framework can reduce the computation time by 97.5%, compared with basic CMA-ES, revealing the great potential of CC-CMA-ES for solving more difficult large-scale DED problems.","PeriodicalId":202857,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426826.3426849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing complexity of modern power systems has led to the emergence of large-scale dynamic economic dispatch (DED) problems. To solve a large-scale DED problem with high-dimensional decision variables and various constraints is still a challenge using most existing evolutionary algorithms. In this paper, we propose a covariance matrix adaptation evolution strategy based on cooperative co-evolutionary framework (CC-CMA-ES) using delta grouping for solving large-scale DED problem. The experiment results suggest that the CC-CMA-ES is a fast and accurate approach for large-scale DED problems in terms of computation time, solution quality and convergence speed. Integrating CMA-ES into CC the framework can reduce the computation time by 97.5%, compared with basic CMA-ES, revealing the great potential of CC-CMA-ES for solving more difficult large-scale DED problems.