Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction

Scott Hellman, A. McGovern, M. Xue
{"title":"Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction","authors":"Scott Hellman, A. McGovern, M. Xue","doi":"10.1109/CIDU.2012.6382191","DOIUrl":null,"url":null,"abstract":"We introduce Ensembled Continuous Bayesian Networks (ECBN), an ensemble approach to learning salient dependence relationships and to predicting values for continuous data. By training individual Bayesian networks on both a subset of the data (bagging) and a subset of the attributes in the data (randomization), ECBN produces models for continuous domains that can be used to identify important variables in a dataset and to identify relationships between those variables. We use linear Gaussian distributions within our ensembles, providing efficient network-level inference. By ensembling these networks, we are able to represent nonlinear relationships. We empirically demonstrate that ECBN outperforms the meteorological forecast on a rainfall prediction task across the United States, and performs comparably to results reported for Random Forests.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We introduce Ensembled Continuous Bayesian Networks (ECBN), an ensemble approach to learning salient dependence relationships and to predicting values for continuous data. By training individual Bayesian networks on both a subset of the data (bagging) and a subset of the attributes in the data (randomization), ECBN produces models for continuous domains that can be used to identify important variables in a dataset and to identify relationships between those variables. We use linear Gaussian distributions within our ensembles, providing efficient network-level inference. By ensembling these networks, we are able to represent nonlinear relationships. We empirically demonstrate that ECBN outperforms the meteorological forecast on a rainfall prediction task across the United States, and performs comparably to results reported for Random Forests.
连续贝叶斯网络的学习集成:在降雨预测中的应用
我们介绍了集成连续贝叶斯网络(ECBN),这是一种学习显著依赖关系和预测连续数据值的集成方法。通过在数据子集(套袋)和数据属性子集(随机化)上训练单个贝叶斯网络,ECBN生成连续域的模型,可用于识别数据集中的重要变量,并识别这些变量之间的关系。我们在我们的集成中使用线性高斯分布,提供有效的网络级推理。通过集成这些网络,我们能够表示非线性关系。我们通过经验证明,ECBN在美国各地的降雨预测任务上优于气象预报,并且与随机森林报告的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信