Barge-in effects in Bayesian dialogue act recognition and simulation

H. Cuayáhuitl, Nina Dethlefs, H. Hastie, Oliver Lemon
{"title":"Barge-in effects in Bayesian dialogue act recognition and simulation","authors":"H. Cuayáhuitl, Nina Dethlefs, H. Hastie, Oliver Lemon","doi":"10.1109/ASRU.2013.6707713","DOIUrl":null,"url":null,"abstract":"Dialogue act recognition and simulation are traditionally considered separate processes. Here, we argue that both can be fruitfully treated as interleaved processes within the same probabilistic model, leading to a synchronous improvement of performance in both. To demonstrate this, we train multiple Bayes Nets that predict the timing and content of the next user utterance. A specific focus is on providing support for barge-ins. We describe experiments using the Let's Go data that show an improvement in classification accuracy (+5%) in Bayesian dialogue act recognition involving barge-ins using partial context compared to using full context. Our results also indicate that simulated dialogues with user barge-in are more realistic than simulations without barge-in events.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Dialogue act recognition and simulation are traditionally considered separate processes. Here, we argue that both can be fruitfully treated as interleaved processes within the same probabilistic model, leading to a synchronous improvement of performance in both. To demonstrate this, we train multiple Bayes Nets that predict the timing and content of the next user utterance. A specific focus is on providing support for barge-ins. We describe experiments using the Let's Go data that show an improvement in classification accuracy (+5%) in Bayesian dialogue act recognition involving barge-ins using partial context compared to using full context. Our results also indicate that simulated dialogues with user barge-in are more realistic than simulations without barge-in events.
贝叶斯对话行为识别与模拟中的碰撞效应
对话行为识别和模拟传统上被认为是两个独立的过程。在这里,我们认为两者都可以作为相同概率模型中的交错过程进行有效处理,从而导致两者的性能同步改进。为了证明这一点,我们训练了多个贝叶斯网络来预测下一个用户话语的时间和内容。具体的重点是为驳船装载提供支持。我们描述了使用Let’s Go数据的实验,与使用完整上下文相比,使用部分上下文的贝叶斯对话行为识别在涉及驳船的分类准确率(+5%)方面有所提高。我们的结果还表明,与没有用户入侵事件的模拟相比,具有用户入侵的模拟对话更真实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信