Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo
{"title":"In-situ self-powered intelligent vision system with inference-adaptive energy scheduling for BNN-based always-on perception","authors":"Maimaiti Nazhamaiti, Haijin Su, Han Xu, Zheyu Liu, F. Qiao, Qi Wei, Zidong Du, Xinghua Yang, Li Luo","doi":"10.1145/3489517.3530554","DOIUrl":null,"url":null,"abstract":"This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an in-situ self-powered BNN-based intelligent visual perception system that harvests light energy utilizing the indispensable image sensor itself. The harvested energy is allocated to the low-power BNN computation modules layer by layer, adopting a light-weighted duty-cycling-based energy scheduler. A software-hardware co-design method, which exploits the layer-wise error tolerance of BNN as well as the computing-error and energy consumption characteristics of the computation circuit, is proposed to determine the parameters of the energy scheduler, achieving high energy efficiency for self-powered BNN inference. Simulation results show that with the proposed inference-adaptive energy scheduling method, self-powered MNIST classification task can be performed at a frame rate of 4 fps if the harvesting power is 1μW, while guaranteeing at least 90% inference accuracy using binary LeNet-5 network.