Multiscale zero-crossing statistics of intrinsic mode functions for white Gaussian noise

S. Baykut, Tayfun Akgül
{"title":"Multiscale zero-crossing statistics of intrinsic mode functions for white Gaussian noise","authors":"S. Baykut, Tayfun Akgül","doi":"10.5281/ZENODO.42085","DOIUrl":null,"url":null,"abstract":"In this paper, the statistical characteristics of zero-crossing intervals and zero-crossing amplitudes (the time interval and the absolute value of extrema between two successive zero-crossings) of intrinsic mode functions of white Gaussian noise are studied. Intrinsic mode functions are extracted by empirical mode decomposition method. Numerous simulations are conducted and the probability distribution functions of zero-crossing intervals and amplitudes are obtained. Simulation results are included. These findings are important to determine the statistical significance of IMFs. These white noise-only case statistical characteristics can be used for signal detection and/or signal/noise separation and an efficient noise reduction can be achieved.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, the statistical characteristics of zero-crossing intervals and zero-crossing amplitudes (the time interval and the absolute value of extrema between two successive zero-crossings) of intrinsic mode functions of white Gaussian noise are studied. Intrinsic mode functions are extracted by empirical mode decomposition method. Numerous simulations are conducted and the probability distribution functions of zero-crossing intervals and amplitudes are obtained. Simulation results are included. These findings are important to determine the statistical significance of IMFs. These white noise-only case statistical characteristics can be used for signal detection and/or signal/noise separation and an efficient noise reduction can be achieved.
高斯白噪声本征模态函数的多尺度过零统计
本文研究了高斯白噪声本征模态函数的过零间隔和过零幅度(连续两次过零之间的时间间隔和极值绝对值)的统计特性。利用经验模态分解方法提取固有模态函数。进行了大量的仿真,得到了过零间隔和过零幅值的概率分布函数。最后给出了仿真结果。这些发现对于确定imf的统计显著性具有重要意义。这些只有白噪声的情况统计特性可用于信号检测和/或信号/噪声分离,并可实现有效的降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信