{"title":"A statistical method for robust 3D surface reconstruction from sparse data","authors":"V. Blanz, A. Mehl, T. Vetter, H. Seidel","doi":"10.1109/TDPVT.2004.1335212","DOIUrl":null,"url":null,"abstract":"General information about a class of objects, such as human faces or teeth, can help to solve the otherwise ill-posed problem of reconstructing a complete surface from sparse 3D feature points or 2D projections of points. We present a technique that uses a vector space representation of shape (3D morphable model) to infer missing vertex coordinates. Regularization derived from a statistical approach makes the system stable and robust with respect to noise by computing the optimal tradeoff between fitting quality and plausibility. We present a direct, noniterative algorithm to calculate this optimum efficiently, and a method for simultaneously compensating unknown rigid transformations. The system is applied and evaluated in two different fields: (1) reconstruction of 3D faces at unknown orientations from 2D feature points at interactive rates, and (2) restoration of missing surface regions of teeth for CAD-CAM production of dental inlays and other medical applications.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 196
Abstract
General information about a class of objects, such as human faces or teeth, can help to solve the otherwise ill-posed problem of reconstructing a complete surface from sparse 3D feature points or 2D projections of points. We present a technique that uses a vector space representation of shape (3D morphable model) to infer missing vertex coordinates. Regularization derived from a statistical approach makes the system stable and robust with respect to noise by computing the optimal tradeoff between fitting quality and plausibility. We present a direct, noniterative algorithm to calculate this optimum efficiently, and a method for simultaneously compensating unknown rigid transformations. The system is applied and evaluated in two different fields: (1) reconstruction of 3D faces at unknown orientations from 2D feature points at interactive rates, and (2) restoration of missing surface regions of teeth for CAD-CAM production of dental inlays and other medical applications.