Abstract action potential models for toxin recognition

J. Peterson, T. Khan
{"title":"Abstract action potential models for toxin recognition","authors":"J. Peterson, T. Khan","doi":"10.1080/10273660500533898","DOIUrl":null,"url":null,"abstract":"In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build toxin recognition engines. We demonstrate that good recognition rates are achievable with our methodology.","PeriodicalId":294267,"journal":{"name":"Journal of Theoretical Medicine","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10273660500533898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build toxin recognition engines. We demonstrate that good recognition rates are achievable with our methodology.
摘要:毒素识别的动作电位模型
在本文中,我们提出了一种强大的方法,使用数学模式识别方案来检测和分类识别生物细胞中毒素的动作电位事件。我们专注于通过将信息内容抽象为生物传感器有限计算环境中的低维特征向量来检测动作电位中的事件。我们使用从经典霍奇金-赫胥黎模型生成的动作电位族来验证我们的方法并构建毒素识别引擎。我们证明,使用我们的方法可以实现良好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信