Solving a Nonlinear Volterra Integral Equation in L2 As A Generalized Problem of Moments

M. B. Pintarelli
{"title":"Solving a Nonlinear Volterra Integral Equation in L2 As A Generalized Problem of Moments","authors":"M. B. Pintarelli","doi":"10.15864/jmscm.4307","DOIUrl":null,"url":null,"abstract":"It will be shown that find an approximate solution y(x) in L2|0,∞) nonlinear Volterra equation integral can be solved applying the techniques of inverse generalized moments problem in two steps writing the Volterra's equation as a Klein-Gordon equation of the\n form Wxx Wtt-H(x,t), which H(x,t) it is unknown and w(x,t) = y(x)h(t) where h(t)=(t(T-t))2;0≤;t≤T. In a first step, H(x,t) is numerically approximate, and in a second step we numerically approximate the solution y(x) using the H(x,t) previously approximated.\n The method is illustrated with examples.","PeriodicalId":287831,"journal":{"name":"Journal of Mathematical Sciences & Computational Mathematics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sciences & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15864/jmscm.4307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It will be shown that find an approximate solution y(x) in L2|0,∞) nonlinear Volterra equation integral can be solved applying the techniques of inverse generalized moments problem in two steps writing the Volterra's equation as a Klein-Gordon equation of the form Wxx Wtt-H(x,t), which H(x,t) it is unknown and w(x,t) = y(x)h(t) where h(t)=(t(T-t))2;0≤;t≤T. In a first step, H(x,t) is numerically approximate, and in a second step we numerically approximate the solution y(x) using the H(x,t) previously approximated. The method is illustrated with examples.
作为广义矩问题求解L2中的非线性Volterra积分方程
将证明在L2|,∞)非线性Volterra方程积分中求近似解y(x)可以应用逆广义矩问题的技术分两步求解,将Volterra方程写成形式为Wxx Wtt-H(x,t)的Klein-Gordon方程,其中H(x,t)是未知的,w(x,t) = y(x) H(t),其中H(t)=(t(t))2;0≤;t≤t。在第一步中,H(x,t)是数值近似的,在第二步中,我们用之前近似的H(x,t)来数值近似解y(x)。用实例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信