Predicting Most Influential Paper Award Using Citation Count

Fatima Sadaf, M. Shahid, Muhammad Arshad Islam
{"title":"Predicting Most Influential Paper Award Using Citation Count","authors":"Fatima Sadaf, M. Shahid, Muhammad Arshad Islam","doi":"10.1109/ICoDT252288.2021.9441487","DOIUrl":null,"url":null,"abstract":"The early identification of the influential papers is of great significance for assessing the scientific achievements of researchers and institutions as it can help in addressing the processes in an academic and scientific field, such as promotions, recruitment decisions, and funding allocation. This work evaluates features for predicting the most influential paper award that is given by several renowned conferences, ten years subsequent to their publication. The data of five renowned conferences, i.e., ICSE, ICFP, POPL, PLDI, and OOPSLA is used to predict the long-term citations to identify the most influential paper of the respective conference. GD boost model is considered to be better performing among the five different machine learning algorithms. The results show that a three to five years of the time window is good enough to evaluate the most influential paper award. Additionally, the assessment of time window and the citation trajectory of awarded and non awarded papers shows that the citation trajectory of the awarded paper vary from the Citation gain patterns of non-awarded paper.","PeriodicalId":207832,"journal":{"name":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT252288.2021.9441487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The early identification of the influential papers is of great significance for assessing the scientific achievements of researchers and institutions as it can help in addressing the processes in an academic and scientific field, such as promotions, recruitment decisions, and funding allocation. This work evaluates features for predicting the most influential paper award that is given by several renowned conferences, ten years subsequent to their publication. The data of five renowned conferences, i.e., ICSE, ICFP, POPL, PLDI, and OOPSLA is used to predict the long-term citations to identify the most influential paper of the respective conference. GD boost model is considered to be better performing among the five different machine learning algorithms. The results show that a three to five years of the time window is good enough to evaluate the most influential paper award. Additionally, the assessment of time window and the citation trajectory of awarded and non awarded papers shows that the citation trajectory of the awarded paper vary from the Citation gain patterns of non-awarded paper.
利用引用数预测最具影响力论文奖
早期识别有影响力的论文对于评估研究人员和机构的科学成就具有重要意义,因为它可以帮助解决学术和科学领域的过程,例如晋升,招聘决策和资金分配。这项工作评估了预测最具影响力的论文奖的特征,这些奖项是在几个著名会议发表十年后颁发的。利用ICSE、ICFP、POPL、PLDI和OOPSLA五大知名会议的数据进行长期被引预测,以确定该会议最具影响力的论文。在五种不同的机器学习算法中,GD boost模型被认为是性能更好的。结果表明,3 ~ 5年的时间窗足以评价最具影响力论文奖。此外,对获奖论文和非获奖论文的时间窗口和被引轨迹的评估表明,获奖论文的被引轨迹与非获奖论文的被引获得模式不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信