P. Martin-Gonthier, R. Molina, P. Cervantes, P. Magnan
{"title":"Analysis and optimization of noise response for low-noise CMOS image sensors","authors":"P. Martin-Gonthier, R. Molina, P. Cervantes, P. Magnan","doi":"10.1109/NEWCAS.2012.6329069","DOIUrl":null,"url":null,"abstract":"CMOS image sensors are nowadays widely used in imaging applications and particularly in low light flux applications. This is really possible thanks to a reduction of noise obtained, among others, by the use of pinned photodiode associated with a Correlated Double Sampling readout. It reveals new noise sources which become the major contributors. This paper presents noise measurements on low-noise CMOS image sensor. Image sensor noise is analyzed and optimization is done in order to reach an input referred noise of 1 electron rms by column gain amplifier insertion and dark current noise optimization. Pixel array noise histograms are analyzed to determine noise impact of dark current and column gain amplifier insertion. Transfer noise impact, due to the use of pinned photodiode (4T photodiode), is also measured and analyzed by a specific readout sequence.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6329069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
CMOS image sensors are nowadays widely used in imaging applications and particularly in low light flux applications. This is really possible thanks to a reduction of noise obtained, among others, by the use of pinned photodiode associated with a Correlated Double Sampling readout. It reveals new noise sources which become the major contributors. This paper presents noise measurements on low-noise CMOS image sensor. Image sensor noise is analyzed and optimization is done in order to reach an input referred noise of 1 electron rms by column gain amplifier insertion and dark current noise optimization. Pixel array noise histograms are analyzed to determine noise impact of dark current and column gain amplifier insertion. Transfer noise impact, due to the use of pinned photodiode (4T photodiode), is also measured and analyzed by a specific readout sequence.