A Jaccard Weights Kernel Leveraging Independent Thread Scheduling on GPUs

H. Anzt, J. Dongarra
{"title":"A Jaccard Weights Kernel Leveraging Independent Thread Scheduling on GPUs","authors":"H. Anzt, J. Dongarra","doi":"10.1109/CAHPC.2018.8645946","DOIUrl":null,"url":null,"abstract":"Jaccard weights are a popular metric for identifying communities in social network analytics. In this paper we present a kernel for efficiently computing the Jaccard weight matrix on G PU s. The kernel design is guided by fine-grained parallelism and the independent thread scheduling supported by NVIDIA's Volta architecture. This technology makes it possible to interleave the execution of divergent branches for enhanced data reuse and a higher instruction per cycle rate for memory-bound algorithms. In a performance evaluation using a set of publicly available social networks, we report the kernel execution time and analyze the built-in hardware counters on different GPU architectures. The findings have implications beyond the specific algorithm and suggest a reformulation of other data-sparse algorithms.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Jaccard weights are a popular metric for identifying communities in social network analytics. In this paper we present a kernel for efficiently computing the Jaccard weight matrix on G PU s. The kernel design is guided by fine-grained parallelism and the independent thread scheduling supported by NVIDIA's Volta architecture. This technology makes it possible to interleave the execution of divergent branches for enhanced data reuse and a higher instruction per cycle rate for memory-bound algorithms. In a performance evaluation using a set of publicly available social networks, we report the kernel execution time and analyze the built-in hardware counters on different GPU architectures. The findings have implications beyond the specific algorithm and suggest a reformulation of other data-sparse algorithms.
利用gpu上独立线程调度的Jaccard权重内核
在社交网络分析中,Jaccard权重是识别社区的一种流行度量。本文提出了一种在gpu上高效计算Jaccard权矩阵的内核,该内核设计以细粒度并行性和NVIDIA的Volta架构支持的独立线程调度为指导。这种技术使得不同分支的交错执行成为可能,以增强数据重用,并为内存约束算法提供更高的每周期指令率。在使用一组公开可用的社交网络进行性能评估时,我们报告了内核执行时间并分析了不同GPU架构上的内置硬件计数器。这些发现的影响超出了特定的算法,并建议重新制定其他数据稀疏算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信