Reduced-order estimation of power system harmonics using set theory

S. Andreon, E. Yaz, K. Olejniczak
{"title":"Reduced-order estimation of power system harmonics using set theory","authors":"S. Andreon, E. Yaz, K. Olejniczak","doi":"10.1109/CCA.1999.807772","DOIUrl":null,"url":null,"abstract":"In this work, we consider state estimation of harmonic signals with time-varying magnitudes. The presence of such signals has been increasing in electric power systems due to the increased use of power electronics circuits possessing nonlinear voltage vs. current characteristics. In this work, harmonic signals are modelled using ellipsoidal set-theoretic methods and an optimal reduced-order estimator, which has one-half the dimension of the state vector, is introduced for predicting the unknown time-varying harmonic magnitudes. The optimality is in the sense of minimizing both the sum of the lengths of the principal axes and the volume of the ellipsoid for estimation error. This new estimator is compared with a full-order set-theoretic estimator in an example where each frequency component has a randomly changing magnitude.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.807772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we consider state estimation of harmonic signals with time-varying magnitudes. The presence of such signals has been increasing in electric power systems due to the increased use of power electronics circuits possessing nonlinear voltage vs. current characteristics. In this work, harmonic signals are modelled using ellipsoidal set-theoretic methods and an optimal reduced-order estimator, which has one-half the dimension of the state vector, is introduced for predicting the unknown time-varying harmonic magnitudes. The optimality is in the sense of minimizing both the sum of the lengths of the principal axes and the volume of the ellipsoid for estimation error. This new estimator is compared with a full-order set-theoretic estimator in an example where each frequency component has a randomly changing magnitude.
基于集合理论的电力系统谐波降阶估计
本文主要研究时变振幅谐波信号的状态估计问题。由于越来越多地使用具有非线性电压与电流特性的电力电子电路,这种信号在电力系统中的存在一直在增加。在这项工作中,谐波信号采用椭球集理论方法建模,并引入了一个最优降阶估计量,它具有状态向量的一半维数,用于预测未知的时变谐波幅度。最优性是指在估计误差下使主轴长度和椭球体积的总和最小。在每个频率分量随机变化的情况下,将该估计量与全阶集论估计量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信