Combining Distributed Vector Representations for Words

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1513
Justin Garten, Kenji Sagae, Volkan Ustun, Morteza Dehghani
{"title":"Combining Distributed Vector Representations for Words","authors":"Justin Garten, Kenji Sagae, Volkan Ustun, Morteza Dehghani","doi":"10.3115/v1/W15-1513","DOIUrl":null,"url":null,"abstract":"Recent interest in distributed vector representations for words has resulted in an increased diversity of approaches, each with strengths and weaknesses. We demonstrate how diverse vector representations may be inexpensively composed into hybrid representations, effectively leveraging strengths of individual components, as evidenced by substantial improvements on a standard word analogy task. We further compare these results over different sizes of training sets and find these advantages are more pronounced when training data is limited. Finally, we explore the relative impacts of the differences in the learning methods themselves and the size of the contexts they access.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Recent interest in distributed vector representations for words has resulted in an increased diversity of approaches, each with strengths and weaknesses. We demonstrate how diverse vector representations may be inexpensively composed into hybrid representations, effectively leveraging strengths of individual components, as evidenced by substantial improvements on a standard word analogy task. We further compare these results over different sizes of training sets and find these advantages are more pronounced when training data is limited. Finally, we explore the relative impacts of the differences in the learning methods themselves and the size of the contexts they access.
结合词的分布式向量表示
最近对单词的分布式向量表示的兴趣导致了各种方法的增加,每种方法都有优点和缺点。我们演示了不同的向量表示如何廉价地组成混合表示,有效地利用各个组件的优势,正如标准单词类比任务的实质性改进所证明的那样。我们进一步将这些结果与不同规模的训练集进行比较,发现当训练数据有限时,这些优势更加明显。最后,我们探讨了学习方法本身的差异和他们所接触的环境的大小的相对影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信