Detailed study of the Malyuzhinets-Popov diffraction problem

E. Zlobina, A. Kiselev
{"title":"Detailed study of the Malyuzhinets-Popov diffraction problem","authors":"E. Zlobina, A. Kiselev","doi":"10.1109/DD55230.2022.9961043","DOIUrl":null,"url":null,"abstract":"The problem under consideration is the 2D high-frequency diffraction of a plane wave incident along a planar boundary that turns into a smooth convex contour in such a way that the curvature undergoes a jump. Asymptotic analysis based on the classical parabolic-equation method is developed, allowing formulas for the wavefield in the illuminated area, shadow, and the penumbra. The penumbral field is described by means of previously unseen in diffraction theory special functions showing a certain similarity to the Fock's integrals.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9961043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem under consideration is the 2D high-frequency diffraction of a plane wave incident along a planar boundary that turns into a smooth convex contour in such a way that the curvature undergoes a jump. Asymptotic analysis based on the classical parabolic-equation method is developed, allowing formulas for the wavefield in the illuminated area, shadow, and the penumbra. The penumbral field is described by means of previously unseen in diffraction theory special functions showing a certain similarity to the Fock's integrals.
Malyuzhinets-Popov衍射问题的详细研究
考虑的问题是沿平面边界入射的平面波的二维高频衍射,该平面波在曲率经历跳跃的情况下变成光滑的凸轮廓。在经典抛物方程方法的基础上建立了渐近分析,给出了被照区域、阴影和半影的波场计算公式。用衍射理论中未曾见过的特殊函数来描述半影场,这些特殊函数与Fock积分具有一定的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信