High-Order Numerical Methods for Wave Equations with van der Pol Type Boundary Conditions

Jun Liu, Yu Huang, Hai-wei Sun, M. Xiao
{"title":"High-Order Numerical Methods for Wave Equations with van der Pol Type Boundary Conditions","authors":"Jun Liu, Yu Huang, Hai-wei Sun, M. Xiao","doi":"10.1137/1.9781611973273.20","DOIUrl":null,"url":null,"abstract":"We develop high-order numerical methods for solving wave equations with van der Pol type nonlinear boundary conditions. Based on the wave reflection on the boundaries, we first solve the corresponding Riemann invariants by constructing two iterative mappings, and then, regarding the regularity of boundary conditions, propose two different high-order numerical approaches to the system. When the degree of regularity is high, we establish a sixth-order finite difference scheme. While for a low degree of regularity, we provide another method by utilizing the high-order GaussKronrod quadrature rule. Numerical experiments are performed to illustrate the proposed approaches.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973273.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop high-order numerical methods for solving wave equations with van der Pol type nonlinear boundary conditions. Based on the wave reflection on the boundaries, we first solve the corresponding Riemann invariants by constructing two iterative mappings, and then, regarding the regularity of boundary conditions, propose two different high-order numerical approaches to the system. When the degree of regularity is high, we establish a sixth-order finite difference scheme. While for a low degree of regularity, we provide another method by utilizing the high-order GaussKronrod quadrature rule. Numerical experiments are performed to illustrate the proposed approaches.
具有van der Pol型边界条件的波动方程的高阶数值方法
提出了求解具有van der Pol型非线性边界条件的波动方程的高阶数值方法。基于波在边界上的反射,我们首先通过构造两个迭代映射来求解相应的Riemann不变量,然后针对边界条件的规律性,提出了两种不同的高阶数值方法。当正则度较高时,我们建立了六阶有限差分格式。而对于低正则度,我们提供了另一种方法,即利用高阶高斯ronrod正交规则。数值实验说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信