{"title":"On recurrent neural networks for auto-similar traffic prediction: A performance evaluation","authors":"José Maria P. Menezes, Guilherme A. Barreto","doi":"10.1109/ITS.2006.4433332","DOIUrl":null,"url":null,"abstract":"The NARX network is a recurrent neural architecture commonly used for input-output modelling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to nonlinear time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original NARX architecture to fully exploit its computational resources to improve prediction performance. We use real-world VBR video traffic time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Flman architectures.","PeriodicalId":271294,"journal":{"name":"2006 International Telecommunications Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2006.4433332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The NARX network is a recurrent neural architecture commonly used for input-output modelling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to nonlinear time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original NARX architecture to fully exploit its computational resources to improve prediction performance. We use real-world VBR video traffic time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Flman architectures.