T. Oyedepo, A. A. Ayoade, I. Otaide, A. Ayinde
{"title":"Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations","authors":"T. Oyedepo, A. A. Ayoade, I. Otaide, A. Ayinde","doi":"10.21580/jnsmr.2022.8.2.13021","DOIUrl":null,"url":null,"abstract":"In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved.","PeriodicalId":191192,"journal":{"name":"Journal of Natural Sciences and Mathematics Research","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences and Mathematics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/jnsmr.2022.8.2.13021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Volterra-Fredholm分数阶积分微分方程的第二类Chebyshev配置技术
本文利用第二类Chebyshev配置技术,给出了分数阶Volterra-Fredholm积分微分方程的数值解。首先,我们将问题转化为线性代数方程组,然后用矩阵反演的方法求解得到未知常数。通过数值算例,用图表说明了该方法的精度和效率。结果表明,该方法在提高精度和降低工作要求方面取得了较好的效果。©2022 JNSMR UIN Walisongo。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。