Transductive Support Vector Classification for RNA Related Biological Abstracts

B. Adams, Muhammad Asadur Rahman
{"title":"Transductive Support Vector Classification for RNA Related Biological Abstracts","authors":"B. Adams, Muhammad Asadur Rahman","doi":"10.1109/GRC.2006.1635836","DOIUrl":null,"url":null,"abstract":"Support Vector Machines use a set of related supervised learning methods for classification and regression. When used for classification, the SVM algorithm creates a hyper plane that separates the data into two classes with the maximum- margin. Given positive and negative training examples a maximum-margin hyper plane is identified where it splits the positive from the negative examples, while maximizing the margin. Transductive Inference enhances the learning process by attempting to achieve the lowest error rate possible given a small sample of training examples. In this research we developed a set of software tools to convert scientific abstracts into support vectors that could be used with an implementation of Support Vector Machine called SVM-Light to classify the abstracts. Three distinct classification experiments were conducted: First, to classify abstracts about RNA research out of a set of randomly selected Abstracts. Second, to classify abstracts about specific types of RNA research out of a set of abstracts that all contain the expression \"RNA.\" Third, to classify tRNA, mRNA, snRNA, and rRNA abstracts individually out of a set of abstracts pertaining to the four categories of RNA.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support Vector Machines use a set of related supervised learning methods for classification and regression. When used for classification, the SVM algorithm creates a hyper plane that separates the data into two classes with the maximum- margin. Given positive and negative training examples a maximum-margin hyper plane is identified where it splits the positive from the negative examples, while maximizing the margin. Transductive Inference enhances the learning process by attempting to achieve the lowest error rate possible given a small sample of training examples. In this research we developed a set of software tools to convert scientific abstracts into support vectors that could be used with an implementation of Support Vector Machine called SVM-Light to classify the abstracts. Three distinct classification experiments were conducted: First, to classify abstracts about RNA research out of a set of randomly selected Abstracts. Second, to classify abstracts about specific types of RNA research out of a set of abstracts that all contain the expression "RNA." Third, to classify tRNA, mRNA, snRNA, and rRNA abstracts individually out of a set of abstracts pertaining to the four categories of RNA.
RNA相关生物学摘要的转导支持载体分类
支持向量机使用一组相关的监督学习方法进行分类和回归。当用于分类时,支持向量机算法创建一个超平面,该平面将数据分成两个具有最大边界的类。给定正训练样例和负训练样例,在将正训练样例与负训练样例分离的地方识别出一个最大边际超平面,同时最大化边际。传导推理通过尝试在给定的小样本训练示例中实现尽可能低的错误率来增强学习过程。在这项研究中,我们开发了一套软件工具来将科学摘要转换为支持向量,可以与支持向量机SVM-Light的实现一起使用,以对摘要进行分类。进行了三个不同的分类实验:首先,从一组随机选择的摘要中对RNA研究的摘要进行分类。第二,从一组包含“RNA”表达的摘要中,对特定类型RNA研究的摘要进行分类。第三,将tRNA、mRNA、snRNA和rRNA的摘要分别从四类RNA的一组摘要中进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信