2.6 Dual Catalysis with Two or More Biocatalysts

F. Parmeggiani, J. Galman, S. L. Montgomery, N. Turner
{"title":"2.6 Dual Catalysis with Two or More Biocatalysts","authors":"F. Parmeggiani, J. Galman, S. L. Montgomery, N. Turner","doi":"10.1055/sos-sd-232-00169","DOIUrl":null,"url":null,"abstract":"The remarkable activity, selectivity, and stability of many commercially available or easily prepared biocatalysts, along with their simple operative conditions and the intrinsic “greenness” of biocatalytic processes, have all contributed to a rapidly accelerating expansion of the research area dedicated to the design and development of one-pot multistep synthetic approaches involving two or more enzymes and/or microbial cells. A brief survey of the literature is presented, focusing mainly on efficient protocols that are generally applicable to a broad range of substrates and relevant to the synthesis of small, often chiral, organic molecules as synthons for the pharmaceutical and fine-chemical industries.","PeriodicalId":287506,"journal":{"name":"Dual Catalysis in Organic Synthesis 2","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dual Catalysis in Organic Synthesis 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/sos-sd-232-00169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable activity, selectivity, and stability of many commercially available or easily prepared biocatalysts, along with their simple operative conditions and the intrinsic “greenness” of biocatalytic processes, have all contributed to a rapidly accelerating expansion of the research area dedicated to the design and development of one-pot multistep synthetic approaches involving two or more enzymes and/or microbial cells. A brief survey of the literature is presented, focusing mainly on efficient protocols that are generally applicable to a broad range of substrates and relevant to the synthesis of small, often chiral, organic molecules as synthons for the pharmaceutical and fine-chemical industries.
2.6两种或两种以上生物催化剂的双重催化
许多商业上可用的或容易制备的生物催化剂的显著活性、选择性和稳定性,以及它们简单的操作条件和生物催化过程固有的“绿色”,都促进了研究领域的迅速扩大,致力于设计和开发涉及两种或多种酶和/或微生物细胞的一锅多步骤合成方法。简要介绍了文献,主要集中在有效的方案,一般适用于广泛的底物和相关的小,通常是手性,有机分子的合成作为合成子用于制药和精细化工行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信