Constrained Optimization

Dudley Cooke
{"title":"Constrained Optimization","authors":"Dudley Cooke","doi":"10.4324/9780203422632.ch11","DOIUrl":null,"url":null,"abstract":"minimize f(x) subject to: hi(x) = 0 i = 1, . . . , m ≤ n (1) gj(x) ≤ 0 j = 1, . . . , p. hi’s are equality constraints and gj ’s are inequality constraints and usually they are assumed to be within the class C. A point that satisfies all constraints is said to be a feasible point. An inequality constraint is said to be active at a feasible point x if gi(x) = 0 and inactive if gi(x) < 0. Equality constraints are always active at any feasible point. To simplify notation we write h = [h1, . . . , hm] and g = [g1, . . . , gp], and the constraints now become h(x) = 0 and g(x) ≤ 0.","PeriodicalId":437098,"journal":{"name":"Design Optimization using MATLAB and SOLIDWORKS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Optimization using MATLAB and SOLIDWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780203422632.ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

minimize f(x) subject to: hi(x) = 0 i = 1, . . . , m ≤ n (1) gj(x) ≤ 0 j = 1, . . . , p. hi’s are equality constraints and gj ’s are inequality constraints and usually they are assumed to be within the class C. A point that satisfies all constraints is said to be a feasible point. An inequality constraint is said to be active at a feasible point x if gi(x) = 0 and inactive if gi(x) < 0. Equality constraints are always active at any feasible point. To simplify notation we write h = [h1, . . . , hm] and g = [g1, . . . , gp], and the constraints now become h(x) = 0 and g(x) ≤ 0.
约束优化
最小化f(x)服从:hi(x) = 0 I = 1,…, m≤n (1) gj(x)≤0 j = 1,…, p. hi为等式约束,gj为不等式约束,通常假定它们在c类内。满足所有约束的点称为可行点。如果gi(x) = 0,则不等式约束在可行点x处有效,如果gi(x) < 0则不有效。等式约束在任何可行点上都是有效的。为了简化符号,我们写h = [h1,…], hm]和g = [g1,…], gp],此时约束条件变为h(x) = 0, g(x)≤0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信