On the Extraction of Pattern Features from Continuous Measurements

A. Caprihan, R. D. Figueiredo
{"title":"On the Extraction of Pattern Features from Continuous Measurements","authors":"A. Caprihan, R. D. Figueiredo","doi":"10.1109/TSSC.1970.300284","DOIUrl":null,"url":null,"abstract":"A suboptimum method of extracting features, by linear operations, from continuous data belonging to M pattern classes is presented. The set of features selected minimizes bounds on the probability of error obtained from the Bhattacharyya distance and the Hajek divergence. The random processes associated with the pattern classes are assumed to be Gaussian with different means and covariance functions. For M=2, in the two special cases in which, respectively, the means and the covariance functions are the same, both the above distance measures yield the same answer. The results obtained represent an extension of the existing results for two pattern classes with the same means and different covariance functions.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1970.300284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A suboptimum method of extracting features, by linear operations, from continuous data belonging to M pattern classes is presented. The set of features selected minimizes bounds on the probability of error obtained from the Bhattacharyya distance and the Hajek divergence. The random processes associated with the pattern classes are assumed to be Gaussian with different means and covariance functions. For M=2, in the two special cases in which, respectively, the means and the covariance functions are the same, both the above distance measures yield the same answer. The results obtained represent an extension of the existing results for two pattern classes with the same means and different covariance functions.
基于连续测量的模式特征提取
提出了一种利用线性运算从属于M类模式的连续数据中提取特征的次优方法。所选择的特征集最小化了从Bhattacharyya距离和Hajek散度获得的误差概率的界限。假设与模式类相关的随机过程是高斯的,具有不同的均值和协方差函数。对于M=2,在均值和协方差函数分别相同的两种特殊情况下,上述两种距离度量产生相同的答案。所得结果是对具有相同均值和不同协方差函数的两个模式类已有结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信