MemX: Virtualization of Cluster-Wide Memory

Umesh Deshpande, Beilan Wang, Shafee Haque, M. R. Hines, Kartik Gopalan
{"title":"MemX: Virtualization of Cluster-Wide Memory","authors":"Umesh Deshpande, Beilan Wang, Shafee Haque, M. R. Hines, Kartik Gopalan","doi":"10.1109/ICPP.2010.74","DOIUrl":null,"url":null,"abstract":"We present MemX -- a distributed system that virtualizes cluster-wide memory to support data-intensive and large memory workloads in virtual machines (VMs). MemX provides a number of benefits in virtualized settings: (1) VM workloads that access large datasets can perform low-latency I/O over virtualized cluster-wide memory; (2) VMs can transparently execute very large memory applications that require more memory than physical DRAM present in the host machine; (3) MemX reduces the effective memory usage of the cluster by de-duplicating pages that have identical content; (4) existing applications do not require any modifications to benefit from MemX such as the use of special APIs, libraries, recompilation, or relinking; and (5) MemX supports live migration of large-footprint VMs by eliminating the need to migrate part of their memory footprint resident on other nodes. Detailed evaluations of our MemX prototype show that large dataset applications and multiple concurrent VMs achieve significant performance improvements using MemX compared against virtualized local and iSCSI disks.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We present MemX -- a distributed system that virtualizes cluster-wide memory to support data-intensive and large memory workloads in virtual machines (VMs). MemX provides a number of benefits in virtualized settings: (1) VM workloads that access large datasets can perform low-latency I/O over virtualized cluster-wide memory; (2) VMs can transparently execute very large memory applications that require more memory than physical DRAM present in the host machine; (3) MemX reduces the effective memory usage of the cluster by de-duplicating pages that have identical content; (4) existing applications do not require any modifications to benefit from MemX such as the use of special APIs, libraries, recompilation, or relinking; and (5) MemX supports live migration of large-footprint VMs by eliminating the need to migrate part of their memory footprint resident on other nodes. Detailed evaluations of our MemX prototype show that large dataset applications and multiple concurrent VMs achieve significant performance improvements using MemX compared against virtualized local and iSCSI disks.
MemX:集群范围内内存的虚拟化
我们介绍了MemX——一个分布式系统,它虚拟化集群范围内的内存,以支持虚拟机(vm)中的数据密集型和大内存工作负载。MemX在虚拟化设置中提供了许多好处:(1)访问大型数据集的VM工作负载可以在虚拟化的集群级内存上执行低延迟I/O;(2)虚拟机可以透明地执行非常大的内存应用程序,这些应用程序需要比主机上的物理DRAM更多的内存;(3) MemX通过删除具有相同内容的页面来减少集群的有效内存使用;(4)现有的应用程序不需要任何修改就可以受益于MemX,例如使用特殊的api、库、重新编译或重新链接;(5) MemX通过消除迁移驻留在其他节点上的部分内存占用来支持大内存占用虚拟机的实时迁移。我们对MemX原型的详细评估表明,与虚拟化本地磁盘和iSCSI磁盘相比,使用MemX的大型数据集应用程序和多个并发虚拟机实现了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信