{"title":"Shine: A Step Towards Distributed Multi-Hop Visible Light Communication","authors":"L. Klaver, Marco Zúñiga","doi":"10.1109/MASS.2015.78","DOIUrl":null,"url":null,"abstract":"Visible light communication (VLC), a novel technology that enables standard Light-Emitting-Diodes (LEDs) to transmit data, is gaining significant attention. In the near future, this technology could enable devices containing LEDs-such as car lights, city lights, screens and home appliances-to form their own networks. VLC, however, is currently limited to point-to-point communication. To unleash VLC's full potential, we need to provide it with more sophisticated networking capabilities. In this paper, we present the design and implementation of a novel platform aimed at distributed multi-hop visible light communication. Compared to the state-of-the-art, our platform provides similar data rates and coverage, but adds two unique characteristics: (i) 360° coverage, which is necessary to investigate an important property of LED communication: directionality, and (ii) a flexible design, which allows our platform to be connected to many experimental boards such as Arduino, Beagle bone, Raspberry Pi and sensor nodes. To quantify the communication capabilities of our board, we evaluate three key components: link quality, neighbor discovery and packet forwarding. Overall, we hope that our work will lower the entry barrier for members of the pervasive and networking communities to investigate and exploit future LED-based networks.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Visible light communication (VLC), a novel technology that enables standard Light-Emitting-Diodes (LEDs) to transmit data, is gaining significant attention. In the near future, this technology could enable devices containing LEDs-such as car lights, city lights, screens and home appliances-to form their own networks. VLC, however, is currently limited to point-to-point communication. To unleash VLC's full potential, we need to provide it with more sophisticated networking capabilities. In this paper, we present the design and implementation of a novel platform aimed at distributed multi-hop visible light communication. Compared to the state-of-the-art, our platform provides similar data rates and coverage, but adds two unique characteristics: (i) 360° coverage, which is necessary to investigate an important property of LED communication: directionality, and (ii) a flexible design, which allows our platform to be connected to many experimental boards such as Arduino, Beagle bone, Raspberry Pi and sensor nodes. To quantify the communication capabilities of our board, we evaluate three key components: link quality, neighbor discovery and packet forwarding. Overall, we hope that our work will lower the entry barrier for members of the pervasive and networking communities to investigate and exploit future LED-based networks.